

Effet du détartrage chimique des pannes à plis d'un évaporateur en cours de saison sur la qualité du sirop d'érable

Fadi ALI, ing, Ph. D

Jessica Houde, Stéphane Corriveau, Carmen Charron, Mustapha Sadiki

Plan de présentation:

- Problématique et mise en contexte.
- Objectifs de l'étude.
- Méthodologies utilisées.
- Résultats principaux.
 - Conclusion et recommandations.

Problématique...

- Entartrage des pannes:
 - Problème rencontré principalement dans les pannes à fond plat.
 - Phénomène plus présent dans la section à plis avec la pré-concentration de la sève.
 - Formation des complexes insolubles de minéraux et d'acides organiques (bi-malates de calcium, etc.).
 - Précipitation et accumulation sur la surface des pannes.
 - Formation d'une nouvelle couche isolante.

Problématique...

- Aspect réglementaire-Sirop Biologique:
 - Aucun agent chimique n'est autorisé pour le lavage des pannes en cours de saison.
 - Laver les pannes avec de l'eau potable en tout temps pendant la saison.
 - Laver avec de l'acide acétique ou de la sève fermentée à la fin de la saison.

Limites:

- La procédure employée en saison est souvent difficile et longue.
- Le détartrage n'est généralement pas complet.

Objectifs du projet:

- Objectifs:
 - Évaluer l'effet du détartrage chimique sur les caractéristiques du sirop d'érable.
 - Déterminer s'il y a présence de résidus d'agent de lavage dans le sirop produit après lavage.
 - Évaluer s'il y a un effet sur:
 - la composition chimique du sirop.
 - les propriétés organoleptiques du sirop: (Couleur et Saveur du sirop).
 - > Statuer sur le potentiel de détartrage chimique des pannes à plis en cours de saison dans le secteur du <u>Sirop Biologique</u>.

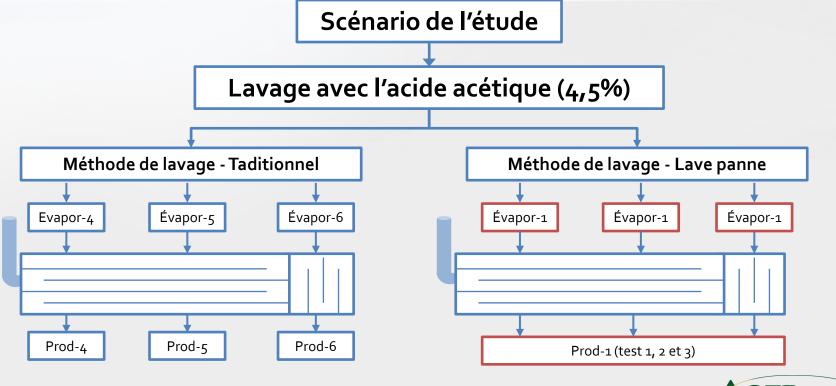
Servir à l'élaboration d'un cahier de charge sur la méthode de lavage.

Méthodologie:

- Agent de lavage chimique utilisé:
 - 1. Acide **acétique** :
 - 1. Composé naturel présent dans la sève d'érable.
 - 2. Autorisé pour lavage à la fin de la saison.
 - 3. Autorisé comme auxiliaire et nettoyant pour d'autres systèmes de production biologique (*listes des substances permises*).
 - 2. Acide acétique concentré (56%).
 - 1. Manipulation plus sécuritaire qu'avec l'acide acétique glacial (99%).
 - 2. Facile à entreposer et à transporter.
 - 3. Concentration d'acide dans la solution de lavage: 4-4,5% (v/v).

Type d'évaporateurs:

• Traditionnel:



• Avec Lave-panne:

Méthodologie:

Méthodologie:

Producteurs sélectionnés:

Érablière	Nombre d'entaille	Type d'évaporateur	Combustible	Taille de l'évaporateur (Pi x Pi)	Production annuelle (baril)
ER-1					
ER-2	20 000	Lave-panne	Huile	4 x 16	182
ER-3					
ER-4	10 000		Bois de chauffage	5 x 15	75
ER-5	12 500	Traditionnel	Bois de chauffage	4 x 16	78
ER-6	13 000		Huile	4 x 16	98

Procédure de lavage :

Avant lavage:

- 1. Arrêter la production du sirop.
 - 1. Vider les pannes à plis de l'évaporateur.
 - 2. Récupérer le réduit.
 - 3. Noter l'état des pannes (couverture %; couleur et aspect de la pierre de sucre).
- 2. Rincer avec de l'eau froide:
 - **1. Traditionnel**: Laveuse à pression.
 - **Lave-panne**: Lave-panne ou laveuse à pression.



Procédure de lavage: Traditionnel

- Préparation de la solution de lavage:
 - Équipement: Bassin d'alimentation de l'évaporateur en concentré.
 - Liquide: un volume de filtrat (froid ou chaud) plus qu'au volume des plis.
 - Agent chimique : acide acétique concentré.

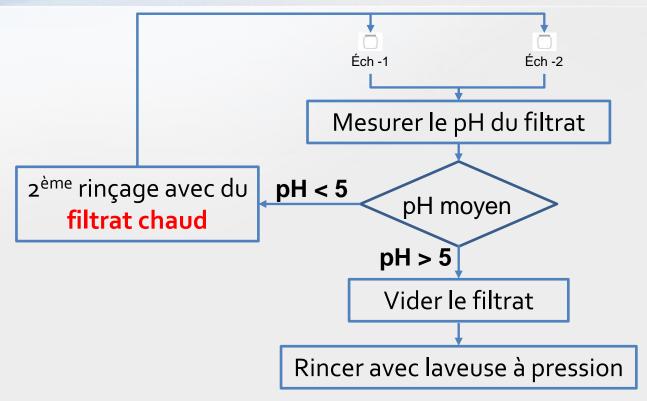
Avantages:

- Opération facile et pratique .
- Solution homogène.
- Opération moins risquée.

Procédure de lavage: Traditionnel

- 1. Transférer la solution de lavage aux pannes à plis.
- 2. Ouvrir la hotte d'évaporateur.
- 3. Démarrer l'évaporateur pour chauffer : 80-85°C.
- 4. Laisser les pannes tremper durant la nuit.
- 5. Le matin, vider les pannes.

Procédure de rinçage: Traditionnel


- 1. Rincer avec une laveuse à pression.
- 2. Tremper les pannes avec de l'eau froide pour 5 min.
- 3. Vider les pannes.
- 4. Remplir les pannes avec du filtrat.
- 5. Démarrer l'évaporateur pour **chauffer** le filtrat jusqu'à l'ébullition.
- 6. Laisser tremper pour **5 min**.

Procédure de rinçage: Traditionnel

Procédure de lavage: Lave-panne

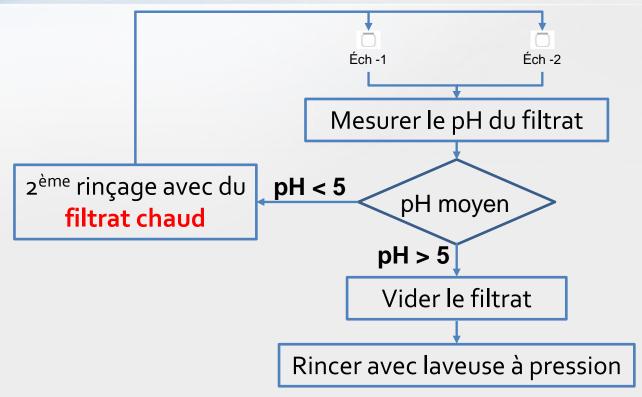
- Préparation de la solution de lavage:
 - Équipement : réservoir indépendant.
 - Liquide: un volume de filtrat chaud plus qu'au volume des plis .
 - Agent chimique: acide acétique concentré.

Avantages:

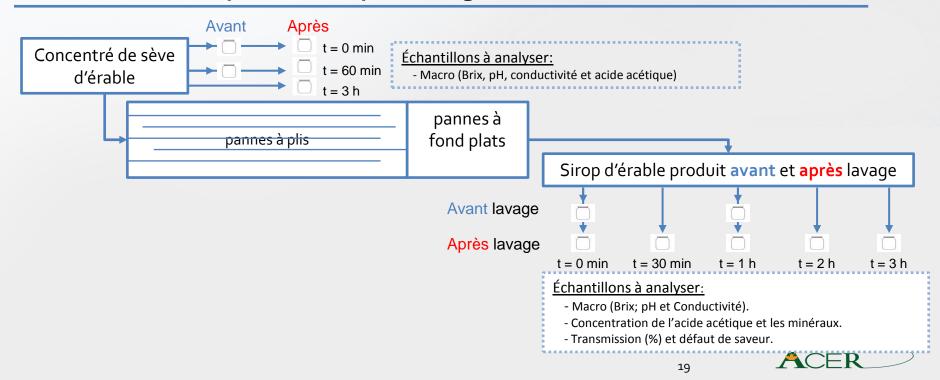
- Opération facile et pratique.
- Solution homogène.
- Opération moins risquée.

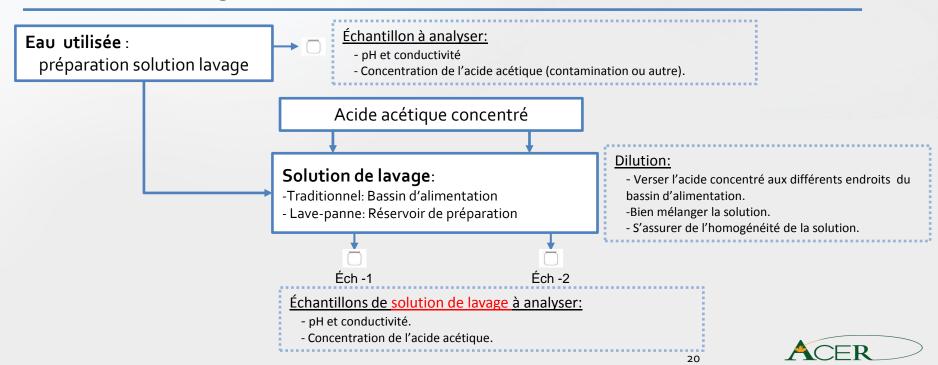
Procédure de lavage: Lave-panne

- 1. Ouvrir la hotte de l'évaporateur.
- 2. Re-circuler la solution de lavage à l'aide du lave-panne
- 3. Durée: Varie selon le détartrage (2h30 à 15h00).
- 4. Vidéo: Lave-panne TRIM2.wmv
- 5. Vider les pannes de la solution de lavage.

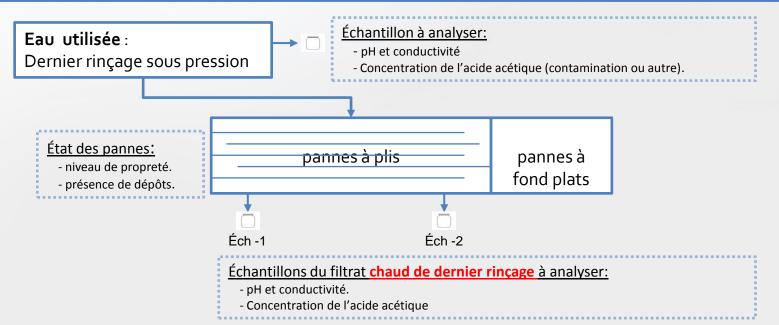

Procédure de rinçage: Lave-panne

- 1. Rincer les pannes avec de **l'eau froide** avec une laveuse à pression.
- Rincer avec de l'eau froide avec le lave-panne : 15 min.
- 3. Vider les pannes.
- 4. Re-circuler du **filtrat** chaud à **85°C, 15 min** avec le lave-panne.


Procédure de rinçage: Lave-panne


Méthodologie d'échantillonnage:

Production du sirop avant et après lavage :


Méthodologie d'échantillonnage:

Solution de lavage:

Méthodologie d'échantillonnage:

Après rinçage:

Résultats-Solution de lavage:

• Caractéristiques:

	Paramètres	Lave-panne	Traditionnel
Solution de lavage	рН	3,0 ± 0,4	2,6 ± 0,05
	Conductivité (µS/cm)	1516 ± 467	1142 ± 76
	Acide acétique (%)	3,93 ± 0,36	3,45 ± 0,46

Résultats-Filtrat de dernier rinçage:

Caractéristiques:

Paramètres	Lave-panne	Traditionnel
рН	6,3 ± 0,1	5,3 ± 0,4
Conductivité (μS/cm)	38,9 ± 27,3	25,5 ± 7,3
Acide acétique (mg/kg)	0,8* ± 0,6	9,6 ± 7,9
Acide acétique (%)	0,0 ± 0,0	0,001 ± 0,0008


^{*: &}lt; Limite de quantification (1 mg/kg).

Résultats-Efficacité de l'acide:

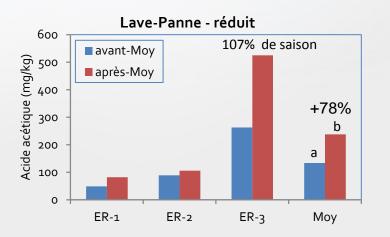
• Traditionnel:

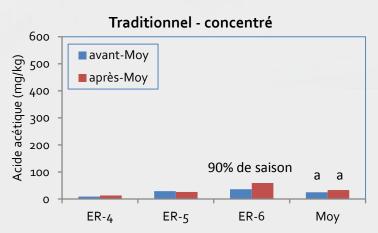
Épaisseur: 0,22 ± 0,16 mm

– Efficacité: 95-100%.

Résultats-Efficacité de l'acide:

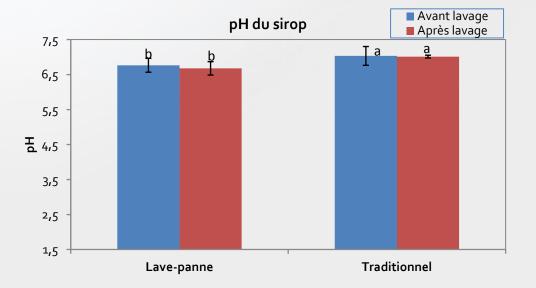
• Lave-Panne:




Efficacité: 75-95%:

Résultats-Caractéristiques du concentré:

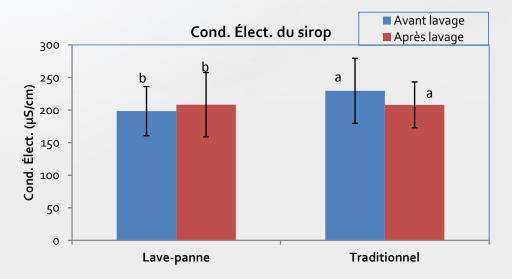
• Concentration de l'acide acétique:



Qualité du concentré ou réduit utilisé après lavage à la fin saison.

Résultats-Caractéristiques du sirop:

• pH du sirop:



Pas d'effet significatif (variation entre -0,3% et -1,3%).

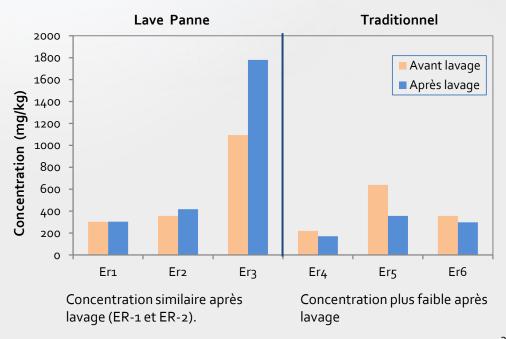
Résultats-Caractéristiques du sirop:

Conductivité électrique:

Pas d'effet significatif (variation entre -4,1% et +4,8%).

Résultats-Composition du sirop:

• Minéraux du sirop:

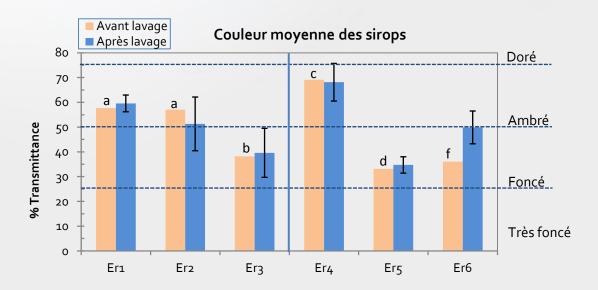

Équipement	Lavage	K+	Ca ⁺⁺	Mg ⁺⁺	Mn ⁺⁺
Traditionnel	Avant	2466 ± 654ª	715 ± 367ª	248 ± 89ª	50 ± 80 ^a
	Après	2405 ± 644ª	808 ± 318 ^a	253 ± 69ª	38 ± 58ª
Lave-panne	Avant	2476 ± 253ª	818 ± 525 ^a	189 ± 55ª	3,3 ± 2,3 ^a
	Après	2508 ± 217ª	1090 ± 844 ^b	210 ± 78ª	7,4 ± 9,2 ^a

Pas d'effet significatif sur les teneurs en ions minéraux.

Résultats-Composition du sirop:


Concentration de l'acide acétique:

Résultats-Composition du sirop:


- Résidus d'agent de lavage :
 - Facteur de concentration d'acide (**FC**) : sirop / concentré.

Résultats-Caractéristiques du sirop:

• Couleur:

Résultats-Caractéristiques du sirop:

• Saveur:

Agent de lavage	Érablière	Avant ou Après	Note de saveur du sirop		
		lavage	ОК	√-VR4	√-VR1
Lave-panne	ER-1	Avant	2	2 1	
	ER-2	 Après			
	ER-3	_ Apres	2	1	
Traditionnel	ER-4	Avant	2		1
	ER-5				
	ER-6	_ Après	2		1

Conclusion:

- □ Lavage avec l'acide acétique à 4,0% permet d'éliminer le tartre de la pierre de sucre (75% à 100%).
- ☐ Les sirops produits après lavage:
 - > ont une composition chimique similaire aux sirops produits avant lavage.
 - > ont des propriétés organoleptiques similaires aux sirops produits avant lavage.
 - > n'ont pas été affecté par des résidus d'agent de lavage.

Recommandations:

- Lavage des pannes avec une solution de 4% d'acide acétique.
- Le rinçage après lavage:
 - Fréquences de rinçage froid-chaud.
 - Le pH du filtrat de dernier rinçage à chaude > 6.
- Les résultats sont valides pour une solution de lavage de ~ 4%.

Remerciement:

Conseil Nord-American du Sirop d'Erable (CNASE-NAMSC).

• Fédération des Producteurs Acéricoles du Québec (FPAQ).

Les 4 producteurs participants au projet.

Questions..... Merci